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Outline

Multi-objective genetic algorithm (MOGA)
EXxisting optimizations on dynamic aperture
New efficient method with MOGA

Applications on NSLS-II storage ring

Correlation between nonlinear driving terms and
dynamic aperture




Genetic Algorithm (GA)

Genetic Algorithm (GA) mimics the evolution of nature:

“It is not 13[11%
strongest of the —ya
species that % . %E
L survives, nor the
¢ most intelligent, )
& but the one most 2‘% = é
. responsive to |

change.”

-Charles Darwin, 1809

Crossover: children inherit genetic codes from parents

Mutation: change the children’s genetic information

: only these “elites” survive and reproduce




Multi-Objective Optimization
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Review of existing methods

® Method 1: minimizing the nonlinear driving terms with
specific weights, i.e. MAD

Penalty Driving
function term
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® Difficulties:
® Trapped in a local minimum
® How to specify weights?




Review of existing methods

® Method 2: brute-force MOGA driven by direct
tracking

® |L.Yang,Y.Li etal (PRST-AB, 2011)
® M. Borland, integrated to ELEGANT

Optimizing DA Area

" Works very successfully, but,
2 [~ Difficulties:

. '|» ¢ No physics is behind
* |l. « Very time-consuming in direct
j DA tracking, especially when
RO your computer is not powerful,
© Objective func. are DA areas. or your ring iS b|g

© Constraints are fixed ellipse
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© Variables are 6 geom. sext.
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Motivation

® A strong correlation between DA and NDTs
does exist .(L. Yang & Y. LI @BNL, M. Borland
& L. Wang @ANL and SLAC)
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Correlation of NDT and DA
Yang and Li, PRST-AB

Driven Force

Figure 3. Automatic reduction of the driving terms after
the optimization although DA is set as one of the
objectives during the optimization.

M. Borland & L.



An efficient method

®Using MOGA driven by NDT
computing rather than DA
tracking

® Be efficient: computing NDTs Is much
cheaper than DA tracking

® Be of “physics”. having small low order
NDTs Is an necessary condition for

Ner DA ‘




Parallel Computation and GA




Applications on NSLS-II ring

¢ Energy: 3GeV
® Emittance: 2nm bare, 1nm with 3x6.8m DWs

¢ Lattice: 30-standard DBAs (Chasman-Green)

Requirements for DA:

DA >= 15mm at high-beta
straight for efficient injection

Energy acceptance >2.5% for
sufficient beam lifetime

Tolerate numerous insertion
devices and engineering errors




Simply case: Chromaticity
+7/+7

® Purpose: high linear chromaticity to stabilize beam at
high stored beam current

® Optimization procedure:

® Tuning chromatic sextupoles to achieve +7/+7 linear
chromaticity

® Tuning 6 families geometrical sextupoles to optimize DA
and energy acceptance

® Penalty functions: first and second order driving terms:
Naped er Where a+b+c+d+e = 3 and 4 (totally ~ 30 terms)




Gxy = +7/+7 Dynamics:
chromaticity
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Tune dependence on amplitudes

Horizontal Vertical
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Dynamic aperture and energy
acceptance

100
1

Tune injected
beam

90

60

Value 1: INJ-BK)EFf:SRInj-1- [%]
70 80
1 1

Correct orbit and optics Correct coupling \m‘

|

50
1 |
pe—____3

40
1

30

20

l .'\- 1"!&_,: i ""':“l_—
3803 002 -o001 0.00
§




Demanding case: Low alpha
Lattice

Purpose: to short bunch length by reducing

momentum compactor from 5e-4 to 3.4e-06

1. Linear chromaticity to
— B | — .ful — 10 xm, — 100, +2/+2

| 2. Minimize higher order
momentum
compactions to have
a stable longitudinal
motion

3. Have sufficient DA
| | and energy
‘(m) acceptance




Objective 1: chromaticity control

1. linear chromaticity
close to +2/+2

2. Large high-order
chromaticities




Objective 2: longitudinal
stablllty
M minimize higher order
j T s momentum compaction

factors to have stable

-
M longitudinal motion
I m : 771(8)
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Objective 3: dynamic aperture
and energy acceptance

e I«- Sufficient energy
% . | .. acceptance for
= I lifetime
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Sufficient dynamic |
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. Having small NDTs

IS an necessary
but insufficient
condition for
having a large DA

. Sufficient

population per
generation is the
key parameter to
get some good
solutions



New characterization with square
matrix and sufficient conditions

We may now write this in the form

X =MX, 2)
where to 4th order, we define the 14 x 1 monomial array
Xo=(x0 po x xopo P§ ... pP§) (3
N = UMU™! @)
No
Ny

_ Noi |

= Ny )
N_3

Ny = e*[4rf 6)

with k = +1,42,.... I is the identity matrix and 7T the
matrix with 1’°s just above the diagonal:

dynamic aperture (mm?
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Phase space trajectories
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Summary

MOGA driven by the nonlinear driving terms is very efficient

Having small low order NDTs is an necessary, but
Insufficient condition for have a decent DA.

The number of populations is the key parameter. Parallel
computation capability is preferable.

Tracking simulation is the finial criteria to select the best
solutions from the last generation

New approach of characterization of nonlinear dynamics is
under development
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